Analysis of Singularities for Partial Differential Equations

نویسنده

  • Shuxing Chen
چکیده

Reading is a hobby to open the knowledge windows. Besides, it can provide the inspiration and spirit to face this life. By this way, concomitant with the technology development, many companies serve the e-book or book in soft file. The system of this book of course will be much easier. No worry to forget bringing the analysis of singularities for partial differential equations book. You can open the device and get the book by on-line.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the convergence of the homotopy analysis method to solve the system of partial differential equations

One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...

متن کامل

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method

In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...

متن کامل

On The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method

In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010